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An approximate calculation is made of the polaron effective mass as defined by Frohlich.
The approach taken is a variational one based on an extended version of Hohler’s ansatz in
which the trial state function employed is an exact eigenfunction of the total wave vector of the
polaron. The effective mass obtained simulates the Feynman-Schultz results while the corre-
sponding polaron self-energy is fairly accurate but inferior to the result of Feynman and Schultz.

1. DEFINITION OF PROBLEM

In a description of the motion of a single conduc-
tion electron in an ionic semiconductive crystal,
Frohlich! develops a Hamiltonian for a system con-
sisting of the electron interacting with the polariza-
tion field resulting from the long-wavelength longi-
tudinal optical modes of the crystal. The Hamilto-
nian is given by
1/2

2
H(a)=- 5%-5 + Z};b;,bﬁi (4ra/S)

X Z;[(l/v)(b%e";';—b;e”v"f)], (1)
where T is the coordinate of the electron, b} and b;
are bosonic creation and destruction operators of
a polarization field quantum of wave vector v, a is
a dimensionless coupling constant characteristic
of the crystal, and S is the normalization volume.
The limit S~ is to be taken with
d% .

lim 3 = 8% (2)

S ¥ m
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In the derivation of Eq. (1), the crystal is treated
as a continuous medium and it is assumed that, in
the absence of the polarization field, the conduction
electron moves as a free particle with a Bloch mass
m. It is also assumed that the long-wavelength lon-
gitudinal optical modes, which interact significantly
with the electron, all have a common angular fre-
quency w. A natural unit system is employed in
which Z=w=2m =1.

The name “polaron” has been given to the entity
consisting of the Bloch conduction electron together
with its accompanying nonradiative polarization
field. Accordingly, Frohlich defines the polaron
self-energy Eq(a@), and the polaron effective mass

pla):
Eola,K)=Eq(a@)+[1/p (a)]k%+ O (&Y, 3)

where E (o, k) is the least eigenvalue of H (a)
whose corresponding eigenfunction is simultaneously
an eigenfunction of the conserved total wave vector

2 nteg, (4)

with corresponding eigenvalue k. In ordinary units
the self-energy is E,(a) Zw and the effective mass
is u(a)m.

Froéhlich’s definition of the polaron effective mass
is of special interest because it is based upon the
rigorously valid law of conservation of total wave
vector, and as such is properly defined apart from
any method of approximation. Moreover, it is
shown in the sequel to this paper that Frohlich’s
polaron effective mass is what is measured in a
cyclotron resonance experiment at low magnetic
fields.

The problem of determining the self-energy and
effective mass of the polaron as functions of the
polaron coupling constant o is of long-standing in-
terest because it serves as an ideal testing ground
for some types of field-theoretical methods of ap-

proximation. The Lee-Low- Pines? variational
calculation yields
Ey(a)=-a (5)
and
pla)=1+ta. (6)

These results (also obtainable by perturbation
theory) are exactly correct to first order in @ in
the limit of weak coupling. The strong-coupling
variational calculations of Landau® and Pekar*
yield

Ey(@)=-aa? (7
and

p'(a)=bat+1, (8)

with
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a~0.10 and b~0.02. (9)

The analytic form of Eq. (7) is asymptotically cor-
rect.® The effective mass p’ given by Eq. (8) is
based on a generalized definition of effective mass,
which is equivalent to Frohlich’s definition only if
the wave function employed is an eigenfunction of
the total wave vector. The Landau-Pekar trial wave
function represents the electron as bound to a ficti-
tious trapping point. Such a wave function is not an
eigenfunction of the total wave vector. The Feynman-
Schultz® " results for the self-energy and their effec-
tive mass agree both with the Lee-Low-Pines re-
sults for weak coupling and with the Landau- Pekar
results for strong coupling and possess smooth
transitional behavior for intermediate coupling.
Their effective mass, however, is based upon still
another definition which is convenient within the
path-integral formulation which they employ.

The question arises as to whether Froéhlich’s
effective mass is approximated by the results ob-
tained on the basis of these alternative definitions.
It is the purpose of this paper to provide some in-
sight into the answer to this question by displaying
a trial polaron ground-state function which is an
exact eigenfunction of the total wave vector, which
yields results for Frohlich’s effective mass which
are similar to the Feynman-Schultz effective mass,
and which at the same time yields reasonable re-
sults for the polaron self-energy.

II. SOLUTION

In order to evaluate Frohlich’s polaron effective
mass for strong coupling, HEhler® employs a trial
state function given by

Ty=S"V2 [ae'® Ty (F-7,Y),  (10)

where ¥,(r-¥,y) has the form of a Landau-Pekar
trial state function in which ¥ is the point to which
the electron is bound in the Landau- Pekar descrip-

tion. Such a state function is given by
‘IIO (;_§, —§) =Q (‘f—§) $ (;)’ (11)
where
- - +.3.2,52
Q(r_y):e'(r y) /B (12)

is a ground-state bound-electron wave function in
which B is a variational parameter and where &(¥)
is a polarization field state function (independent of
the electron coordinate T) chosen to minimize the

expectation value of H with respect to ¥y (r-7,¥).
The resulting choice is

B(F) =~ L0} 8, (13)
where

i @) = (ama/sy/ep=t pvonte®iis (14)

and where @, is the polarization-field vacuum state.
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Hohler’s trial state function ¥, is such a linear
combination of Landau-Pekar state functions that
the result is an exact eigenfunction of the total
wave vector with corresponding eigenvalue equal to
k. For asymptotically strong coupling, HGhler’s
results, based on ¥,;, agree with the Landau-Pekar
self-energy, but yield just one-half of the Landau-
Pekar effective-mass value.

Of greater generality than ¥;, however, any
state function of the form

v= [ dY % (T, §) @), (15)
where

¥ (5,§)=5""2exp{ik- [+ (1-0)F]}- @(F-7) (16)

is also an exact eigenfunction of the total wave-vec-
tor operator with corresponding eigenvalue equal

to E, regardless of the value of the variational pa-
rameter ¢ so introduced.’ Expression (16) has the
form of the ground-state wave function for a two-
particle system consisting of the electron with
coordinate T and a fictitious particle with coordinate
¥ bound together by a simple harmonic attraction.
The variational parameter ¢ represents the ratio

of mass of the fictitious particle to the total mass
of the two-particle system. H6hler’s state function
¥, represents the special case of ¥ for which the
mass of the fictitious particle is infinite and thus
t=1. For k=0, ¥and ¥y are equivalent. As a
result, the polaron self-energy based on ¥ must re-
produce Hohler’s polaron self-energy. On the other
hand, the effective mass based on ¥ differs from
Hohler’s result.

To obtain the self-energy E,(a)and Frolich’s
effective mass pu(a) corresponding to the trial state
function ¥, one must first calculate the expectation
value E,(a, K) of H as given by Eq. (1) with respect
to ¥ as given by Egs. (15), (16), and (12)-(14).
Next, Ey(a, k) must be expanded in a power series
about k =0 through second order to obtain Eq(a) and
1/u(a) as the leading coefficients, in accordance
with Eq. (3). The result for Ey(a) depends upon B,
but not upon ¢, and 1/u(a) depends upon both 8 and
t. One may then determine the optimum values of
B and ¢ by minimizing E,(a) with respect to 8 and
by minimizing 1/u(a) with respect to . Such a
method is justified, since for arbitrary values of
k, Eo(a, k) must be greater than the exact least
eigenvalue of the operator H restricted to operation
in the eigenspace of the total wave-vector operator
with corresponding eigenvalue equal to k.

III. RESULTS

The preceding procedure ultimately leads to the
following results for approximating the polaron
self-energy Ey(a) and Fréhlich’s polaron effective
mass ((a), whereinit remains to minimize the self-
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energy with respect to the variational parameter
c=2/8:

Ey(a)=1,/1I, a7
and

pla)=[1-35/0,1, - L1y, (18)
where

L=[" R&)dx, 1= [ QU)R()ax,

L= [T #*R&)dx, I = ["x*QW)R(x)dx,
Iy= fo” xV(x) R(x)dx, (19)
with
R(x)=x% exp[- 3x%+3aCx 1 ¢(x) - aC/y 7],
Qx)=-2aCx ¢ (3 x)

+5aCx ' [20() +C2x¢” (x)] - VA(x), (20)

V(x) = 12C*x?[x ¢’ (x) - o ()] ,
wherein

o) = [*'(y)dy, (21)

¢ (x)=(2/ym) e,

Numerical minimization of Ey(a) with respect to
C yields the results given in Table I. Figures 1 and
2 show graphically the results for the self-energy
and effective mass. For comparison, in the same
figures are shown the corresponding results of Lee,
Low, and Pines, of Landau and Pekar, and of Feyn-
man and Schultz.

In the limit of strong coupling, both the self-ener-
gy and the effective mass agree with the Landau-
Pekar results. In the limit of weak coupling,

Eo(a)==0.718a +0(a?) (22)

TABLE L. Self-energy and effective mass of the polaron
as functions of the polaron coupling constant.

Coupling Variational Self- Effective
constant parameter energy mass
a C(=1%) Ey(x1%) u(=2%)
1 1.96 - 0.776 1.21
2 2.02 - 1.59 1.53
4 2.22 - 3.40 2.89
6 2.59 - 5.59 8.05
7 2.87 - 6.92 16.2
8 3.18 — 8.46 33.9
9 3.54 —-10.2 67.4
10 3.90 -12.2 121
11 4.26 —-14.4 198
13 4,99 -19.5 440
15 5.73 —-25.4 840
20 7.49 —44.0 2900
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and
LANDAU, PEKAR
pla)=1+0.179a + 0(a?), (23) ol
which may be compared with the exact weak-coupling
expansions
Ey(a)=- a+0(a?) (24) i
S 102
and g 4+ FEYNMAN, SHULTZ
pla)=1+¢=~0.167)a+0(a?). (25) S ° THBLE |
IV. REFINEMENT Y oerk
The preceding presentation is a simplification of LEE, LOW, PINES
a more refined treatment based on a trial polaron
state function obtained by replacing Eq. (14) by the 160 1 .
10 20

more general form

fo(§)=p¥ama/s ) w1+ 28k - ¥ +n20?)]?

xexpl—g(1-¢)B%%-i(1-¢)V-§], (26)
where p, & 7, and ¢ are additional variational
parameters. By setting p=1andn =£=¢=01in

Eq. (26), one recovers Eq. (14). Although the total
number of variational parameters of this refined
model is six, all but two of them may be eliminated
analytically. A study' of this refined treatment re-
veals that for all values of o less than a critical
value of about 7, the variationally optimum value

of ¢ and 1 is exactly unity, in which case the results
degenerate to the Lee-Low-Pines results which are
correct to first order in @ for weak coupling.
However, if the variational parameters are con-
strained according to the equation

(1-¢)/mp)=(4/3Vm) [a+2(e™*/?-1)],

it is found that the resulting self-energy and effec-

(27)

COUPLING CONSTANT

o 10 20
T T

LANDAU, PEKAR

LEE, LOW, PINES

SELF - ENERGY
'
~
o
T

+ FEYNMAN, SHULTZ
-30 |- ® TABLE |

Self-energy of the polaron as a function of the
polaron coupling constant.

FIG. 1.

COUPLING CONSTANT

Effective mass of the polaron as a function of
the polaron coupling constant.

FIG. 2.

tive mass go smoothly from weak-coupling values
which are correct to first order in @, to strong-
coupling values which agree with the Landau-Pekar
results. The self-energy obtained with this con-
straint is superior to the result given in Table I but
inferior to Feynman’s for all values of @ and the

effective mass is slightly less than Feynman’s.
Since the effective-mass result prior to refinement

is slightly greater than Feynman’s result, it is
therefore apparent that the variational parameters
of the refined model could be constrained in such a
way to reproduce the Feynman-Schultz effective
mass and simultaneously give a self-energy which
is slightly superior to the result given in Table I.

V. CONCLUSION

The polaron effective mass is defined by Frhlich
on the basis of the exact law of conservation of the
polaron total wave vector. It is known that for weak
coupling, the Frohlich effective mass is given by
p=1+%a correctly to first order in the polaron
coupling constant @. The calculations of the effec-
tive mass by Landau and Pekar for strong coupling
and by Feynman and Schultz for all coupling strengths
are both based on alternative definitions which are
convenient to their methods of approximation. The
Feynman-Schultz effective-mass results agrees to
first order in @ with the correct result for weak
coupling, agrees with the Landau-Pekar result for
strong coupling, and provides a smooth transitional
behavior for intermediate coupling. The contention
that the effective-mass calculations based on these
alternative definitions do approximate the Frhlich
effective mass is supported here by the display of
a polaron state function which is an exact eigenfunc-
tion of the polaron total wave vector, which yields
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fairly accurate polaron self-energies, and which
yields a Frohlich effective mass, closely simulating
the Feynman-Schultz effective-mass approximation.

An alternative approach to obtaining the polaron
effective mass is provided by a study of the cyclo-
tron motion of a polaron which is discussed in the
sequel to this paper.
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The effect of the spin-exchange interaction between electron and hole is investigated for
the case of excitons originating from one of the p-like valence bands and an s-like conduction

band, as is the case for IIb-VIb compounds.

A general exciton matrix is constructed, start-

ing from the work of Pikus. It includes spin-orbit, crystal-field, spin-exchange, and deform-

ation-potential interactions.

Use of this matrix then allows a theoretical fit to our experimen-

tal data which describes the shift of exciton levels under uniaxial pressure in ZnO, CdS, and

CdSe.

This fit results in the determination of six deformation potentials, two spin-orbit para-
meters, the crystal-field parameter, and the exchange parameter.

The genéral theory, when

adapted to the zinc-blende structure, allows us to fit our data on cubic ZnS and ZnSe, result-
ing in a determination of two deformation potentials and the spin-exchange parameter for

each compound.

I. INTRODUCTION

The phenomenon of free excitons in semicon-
ducting crystals has been a subject of considerable
interest for many years and has been summarized
in general by Knox, ! and in particular with respect
to group II-VI compounds by Reynolds ef al.? It
has always been clear that the exciton properties
are closely related to the fundamental properties
of the materials in which they were observed.

For the interpretation of these exciton spectra,
one usually considers that an exciton is composed
of two particles: an electron in a conduction band
and a hole in a valence band which are bound to-
gether by the Coulombic interaction. It is cus-

tomarily assumed further that the j-j coupling
scheme holds for these exciton states in the frame-
work of the one-electron energy-band model.

Thus, multiple structures in the exciton spectra
are attributed to the excitonic transitions arising
from the split-off valence bands. One usually
equates the energy difference between two excitons
in a cubic material such as zinc-blende ZnS with
the spin-orbit splitting of its valence band. In
wurtzite CdS, Hopfield related the observed energy
differences of the three free excitons observed
near the fundamental gap to the spin-orbit and
crystal-field parameters of the CdS valence

band on the basis of the quasicubic model.® This
procedure has been generally followed in the in-



